C3-R4: MATHEMATICAL METHODS FOR COMPUTING

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
3.

a) A new computer virus can enter the system through an e-mail or through the internet. There is a 30% chance of receiving it through an email. There is a 40% chance of receiving it through the internet. Also, there is 15% chance that the virus enters the system both through an e- mail and the internet. What is the probability that the virus does not enter the system at all?
b) Consider two discrete random variables X and Y with joint probability mass function given in the following table:

Show that X and Y are not independent variables.
c) Let $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<2 \pi$

Find the Fourier coefficients a_{n} and $b_{n}, n=1,2,3, \ldots$, for $f(x)$.
d) Solve the following linear programming problem

$$
\begin{aligned}
& \text { Maximize } z=5 x_{1}+4 x_{2} \\
& \text { subject to } \\
& 6 x_{1}+4 x_{2} \leq 24 \\
& x_{1}+2 x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

e) Assume that the number of messages input to a communication channel in an interval of duration t seconds is Poisson distributed with parameter 0.3t. Compute the probability that exactly three messages arrive during a 10 second interval.
f) Find the Laplace transform of the function $f(t)=e^{-t} \cos 2 t$.
g) With usual notations, prove that $\mathrm{H}(\mathrm{X}, \mathrm{Y})=\mathrm{H}(\mathrm{Y})+\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$ for two random variables X and Y which take on respective values $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ with joint probability mass function $p\left(x_{i}, y_{i}\right)=P\left\{X=x_{i}, Y=y_{j}\right\}$.
2.
a) At a telephone booth, if the mean duration of telephone conversation is three minutes, and that no more than a three - minute (average) wait for the phone may be tolerated then determine the maximum call rate that can be supported by one telephone booth.
b) A repair facility shared by a large number of machines has two sequential stations with respective rates 1 per hour and 2 per hour.

The cumulative failure rate of all the machines is 0.5 hour. Assume that the system behaviour may be approximated by the two-stage tandem queue in above figure, determine the average repair time.
3.
a) A Markov chain X_{0}, X_{1}, \ldots on states $0,1,2$ has the transition probability matrix
$P=\left[\begin{array}{ccc}0.1 & 0.2 & 0.7 \\ 0.9 & 0.1 & 0 \\ 0.1 & 0.8 & 0.1\end{array}\right]$ and initial distribution
$p_{0}=\operatorname{Pr}\left\{X_{0}=0\right\}=0.3, p_{1}=\operatorname{Pr}\left\{X_{0}=1\right\}=0.4$, and $p_{2}=\operatorname{Pr}\left\{X_{0}=2\right\}=0.3$.
Determine $\operatorname{Pr}\left\{X_{0}=0, X_{1}=1, X_{2}=2\right\}$.
b) Obtain a Fourier series expression for $f(x)=x^{3},-\pi<x<\pi$.
4.
a) Suppose X and Y are random variables that assume the values x and y, where $x=1$ or 2 and $y=1,2,3,4$, with probabilities given by the following table:

	1	2	3	4
1	$1 / 4$	$1 / 8$	$1 / 16$	$1 / 16$
2	$1 / 16$	$1 / 16$	$1 / 4$	$1 / 8$

Obtain the entropy $\mathrm{H}(\mathrm{X}, \mathrm{Y})$.
b) A pair of fair dice is rolled. Let $X=\left\{\begin{array}{l}1 \text { if the sum of the dice is } 6 \\ 0 \text { otherwise }\end{array}\right.$
and let Y equals the value on the first die. Find the joint probability mass function of (X, Y).
5.
a) Find the inverse Laplace transform of the function $\mathrm{F}(\mathrm{s})=\frac{s}{s^{2}+4 s+13}$.
b) Using the Laplace transform, find the solution of the initial value problem $y^{\prime \prime}+25 y=10 \cos 5 t, y(0)=2, y^{\prime}(0)=0$.
6.
a) If the probability density function of a random variable $\mathrm{x}, 0 \leq \mathrm{x} \leq 1$, is $f(x)=\frac{e^{x}}{e-1}$, then find the cumulative probability density function $F(x)$ of x. Using it and the inverse transform method, determine the random variable x.
b) Use 10 random numbers between [0, 1] and Monte Carlo simulation to estimate the following integral

$$
\begin{equation*}
\int_{0}^{1}\left(1-x^{2}\right)^{3 / 2} d x \tag{9+9}
\end{equation*}
$$

Also compare your estimated answer with the exact integral value.
7.
a) Solve the following linear programming problem using the simplex method

Maximize $z=5 x_{1}+3 x_{2}$ subject to

$$
\begin{aligned}
& 3 x_{1}+5 x_{2} \leq 15 \\
& 5 x_{1}+2 x_{2} \leq 10 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

b) Consider the function for $x_{1} \geq 0, x_{2} \geq 0, f\left(x_{1}, x_{2}\right)=\ln \left(x_{1}+1\right)+x_{2}$, show that f is a concave function. Use this knowledge and the Karush Kuhn Tucker condition to prove that $(0,3)$ is an optimal solution of the following programming problem:

Minimize $f\left(x_{1}, x_{2}\right)=\ln \left(x_{1}+1\right)+x_{2}$
subject to

$$
\begin{align*}
& 2 x_{1}+x_{2} \leq 3 \\
& x_{1} \geq 0, x_{2} \geq 0 \tag{9+9}
\end{align*}
$$

