B0-R4 : BASIC MATHEMATICS

NOTE :

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
3. (a) Express $\frac{(6+i)(2-i)}{(4+3 i)(1-2 i)}$ in the form of $a+i b$.
(b) Evaluate $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{2} \tan x}$.
(c) Prove that given matrix $\mathrm{A}=\left[\begin{array}{cc}3 & 1+2 i \\ 1-2 i & 1\end{array}\right]$ is hermition matrix.
(d) Test the convergence of the following series

$$
\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots
$$

(e) Solve the differential equation $\frac{\mathrm{d} y}{x(2 \log x+1)}=\frac{\mathrm{d} x}{\sin y+y \cos y}$.
(f) Find $\mathrm{u} \times \mathrm{v}$ and $\mathrm{v} \times \mathrm{u}$ if $\mathrm{u}=2 \vec{i}+\vec{j}+\vec{k}$ and $\mathrm{v}=-4 \vec{i}+3 \vec{j}+\vec{k}$.
(g) Find the length of the graph of $f(x)=\frac{x^{3}}{12}+\frac{1}{x}, 1 \leq x \leq 4$.
2. (a) Solve the system of linear equations
$x_{1}+2 x_{2}-x_{3}=1,3 x_{1}-2 x_{2}+2 x_{3}=2,7 x_{1}-2 x_{2}+3 x_{3}=5$
Using Gauss Eliminations Method.
(b) Find the volume of the solid generated by revolving the region between the parabola $x=y^{2}+1$ and the line $x=3$ about the line $x=3$.
3. (a) Find the area of the region in the plane enclosed by the cardioids $r=2(1+\cos \theta)$.
(b) Find the expansion of $\tan \left(x+\frac{\pi}{4}\right)$ in ascending powers of x upto terms in x^{3} and find approximately the value of $\tan 43^{\circ}$.
4. (a) Find the horizontal asymptotes of the graph of $f(x)=\frac{x^{3}-2}{|x|^{3}+1}$.
(b) Find the length of the circle of radius r defined the parametrically by $x=\mathrm{r}$ cost and $y=r \operatorname{sint}, 0 \leq t \leq 2 \pi$.
(c) Does the following series $\frac{3}{1^{2}-3}+\frac{3}{2^{2}-3}+\frac{3}{3^{2}-3}+\ldots$ converges ?
5. (a) Find a value of c for $f(x)=x^{2}+2 x-1$ on the interval [0,1$]$ using mean value theorem.
(b) Evaluate $\lim _{x \rightarrow 0}(2-x)^{\tan \frac{\pi x}{2}}$.
6. (a) Using determinants, find the area of the triangle with vertices $(-2,-3),(3,2)$ and $(-1,-8)$.
(b) Evaluate $\int_{1}^{\mathrm{e}} \frac{\log x}{x} \mathrm{~d} x$.
(c) Find the center, radius, foci and asymptotes, vertices of the equation $x^{2}+4 x+y^{2}=12$.
7. (a) Solve the differential equation $y e^{y} \mathrm{~d} x=\left(y^{3}+2 x \mathrm{e}^{y}\right) \mathrm{d} y$.
(b) Find all the eigen values and eigen vectors of the matrix $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$.

