## C0-R4.B1: ELEMENTS OF MATHEMETICAL SCIENCES

NOTE:

1. Answer question 1 and any FOUR from questions 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours
Total Marks: 100
3. 


b) Find the equation of the line through the point of intersection of $5 x-3 y=1 \& 2 x+3 y=23$ and perpendicular to the line whose equation is $5 x-3 y=1$.
c) Let $\quad f(x)=\left|\begin{array}{ccc}1 / \sqrt{2} & \sin x & 1 \\ 1 / \sqrt{2} & \cos x & x \\ 1 & 1 & x^{2}\end{array}\right|$

Then what is the value of $f(\pi / 4)$ ?
d) If $\alpha$ and $\beta$ are roots of the quadratic equation $a x^{2}+b x+c=0, a \neq 0$, then formulate a quadratic equation whose roots are $(\alpha-\beta)^{2}$ and $(\alpha+\beta)^{2}$.
e) In how many ways we can choose 2 persons of different genders out of 6 men and 5 women?
f) Evaluate $\left(\cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x}\right) /(\sin \mathrm{x} \cos \mathrm{x}) \mathrm{dx}$.
g) Evaluate $\lim _{x \rightarrow 2 a} \frac{\sqrt{x-2 a}+(\sqrt{x}-\sqrt{2 a})}{\sqrt{x^{2}-4 a^{2}}}$.
2.
a) Find a matrix $A$ satisfying the equation

$$
\left[\begin{array}{ll}
2 & 1 \\
3 & 3
\end{array}\right] A\left[\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

b) Solve the following set of equations using Cramer's rule
$2 x-y+3 z=9$
$X+y+z=6$
$X-y+z=2$
c) If $\mathrm{y} \sin ^{2} \mathrm{x},=2 \mathrm{x}$ then find $\frac{d y}{d x}$.
3.
a) Evaluate the determinant

$$
\left.\left\lvert\, \begin{array}{lll}
x+a & x & x \\
x & x+a & x \\
x & x & x
\end{array}\right.\right)
$$

b) Determine the point on the curve $y^{2}=4 x$ at which tangent to the curve is parallel to the line $y=x$.
c) Determine first three terms in the expansion of $\left(1-2 x^{3}\right)^{11 / 2}$.
4.
a) Determine the maximum value of $y=2 \cos 2 x-\cos 4 x$ when $0 \leq x \leq \pi / 2$.
b) Find the eigen values and eigen vectors of the matrix

$$
\left[\begin{array}{ccc}
6 & -2 & 2  \tag{9+9}\\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

5. 

a) Determine the rank of the following matrix $A$. Does the inverse of $A$ exist? If yes find it, if not why?

$$
\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right]
$$

b) A random variable $X$ has the following probability function:
$\begin{array}{lllllllll}\mathrm{X}: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \mathrm{P}(\mathrm{x}): & 0 & \mathrm{k} & 2 \mathrm{k} & 2 \mathrm{k} & 3 \mathrm{k} & \mathrm{k}^{2} & 2 \mathrm{k}^{2} & 7 \mathrm{k}^{2}+\mathrm{k}\end{array}$
Evaluate $P(X \geq 6)$ and $P(X<4)$. Also find expectation $E(X)$.
6.
a) Let $A$ and $B$ be two events such that $P(A)=3 / 4$ and $P(B)=5 / 8$, show that
i) $\quad P(A \cup B) \geq 3 / 4$
ii) $\quad 3 / 8 \leq \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq 5 / 8$
b) Let $\mathrm{P}(6,3)$ be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If the normal at the point P intersects the $x$-axis at $(9,0)$ then find eccentricity and length of latus rectum of the hyperbola.
7.
a) A set of 5 coins is tossed 3200 times and the number of heads appearing each time is noted. The results are given below:

| No of head: | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Freq | 80 | 570 | 1100 | 900 | 500 | 50 |

Test the hypothesis that the coins are unbiased.
b) Find the limit when $\mathrm{n} \rightarrow \infty$ of the series

$$
\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{3 n}
$$

