Preamble:

Intelligent machines have replaced human capabilities in many areas. Artificial intelligence is the intelligence exhibited by machines or software. It is the branch of computer science that emphasizes on creating intelligent machines that work and react like humans. Artificial Intelligence spans a wide variety of topics in computer science research, including machine learning, deep learning, reinforcement learning, natural language processing, reasoning, perception etc.

Objective:

The course is designed to make the participants capable of solving industry standard problems in artificial intelligence. After completing the course, the participants will be capable of doing the following.

- They will be able to formulate the right AI problems that can be solved with the raw data available.
- They will be able to apply various machine learning algorithms on structured data to develop machine learning models and compare them to obtain the most suitable model and by using suitable metrics.
- They will be able to develop suitable machine learning models using unstructured data using various machine learning algorithms including deep learning, natural language processing methods, computer vision and reinforcement learning.

Expected Job Roles:

- AI Engineer
- AI Research Scientist
- Data Engineer
- Software Engineer

Duration:

420 Hours - (Theory: 140 hrs + Practical: 175 hrs+ Project: 105hrs)

Course Outline:

Sl.	Module Title	Duration (Hours)			
No	Wilder Title	Theory	Lab	Total	
1	Introduction to AI and Programming Tools	52	68	120	
2	Machine Learning	30	40	70	
3	Deep Learning and Natural Language Processing	38	52	90	
4	AI Platforms & Reinforcement Learning	20	15	35	
5	Project	10	95	105	
	Total Duration	150	270	420	
	Total Credits	10	9	19	

रा.इ.सू.प्रौ.सं NIELIT Advanced Diploma in Artificial Intelligence (Certified AI Application Engineer)

Prerequisites:

Having good computer programming knowledge

Eligibility:

- a) BE/B.Tech/BSc (IT/Computer Science/Electronics), BCA, 3 year Diploma (IT/Computer Science/Electronics), Degree holders with PGDCA, DOEACC A, B level Or equivalent of any of these.
- b) Candidates who have appeared in the qualifying examination and awaiting results.

Detailed Syllabus and Learning Outcome

	Detailed Syllabus and Learning Outcome:						
S.	Module Title	Topics	Duration		Learning Outcome		
No			(Hours)				
		10 1	Theory	Lab	1.0		
1	Module-1	1.0 Linux basics	52	68	After completion of this		
	Introduction	1.1 Python Basics Data Types,			module, the candidate		
	to AI and	Conditional Statements,			will be able to:		
	Programming Tools	Looping, Control			• Operate in Linux OS environment.		
	10015	Statements, String, List			Design and write		
		And Dictionary			python applications.		
		Manipulations, Python			Learn basics of		
		Functions, Modules And			database management		
		Packages, Object Oriented			systems and write		
		Programming in Python,			python programs to		
		Regular Expressions,			interact with DBMS.		
		Exception Handling,			• Write python		
		Popular python packages			programs to do data		
		like pandas for data			analysis and visualization using		
		handling			visualization using various libraries		
		1.2 Introduction to Database			• Write R programs		
		Management System &			and use its various		
		SQL, Database Interaction			data structures for		
		in Python.			data analysis, Do data		
		1.3 Data Analysis &			visualization using R.		
		visualization – using			• Solve problems involving probability		
		numpy, matplotlib, scipy			and do statistical data		
		1.4 R Programming:- Basics -			analysis using		
		Vectors, Factors, Lists,			statistics and		
		Matrices, Arrays, Data			probability		
		Frames, Reading data.			distribution methods.		
		1.5 Data visualization - barplot,					

		pie, scatterplot, histogram, scatter matrix 1.6 Probability and Statistics- Probability, Mean, Median, SD, Variance, Probability distributions in R- Normal distribution, Poisson distribution, Binomial distribution. Correlation and Regression.			
2	Module 2- Machine Learning	2.0 Structured and unstructured data handling 2.1 Data Preprocessing 2.1.1 Handling missing data 2.1.2 Data Standardization 2.1.2 Label Encoding 2.1.3 One hot encoding 2.2 Supervised and Unsupervised Learning 2.3 Classification, Regression & Clustering 2.4 Linear Algebra 2.5 Machine Learning Algorithms 2.5.1 Linear Regression 2.5.2 KNN 2.5.3 K Means 2.5.4 Logistic Regression 2.5.5 Support Vector Machine 2.5.6 Decision Tree 2.5.7 Naïve Bayes, etc. 2.6 Ensemble Methods - Random Forest, Boosting and Optimization, etc. 2.7 Model Evaluation Metrics	30	40	After learning this module the participant will be able to • grab raw data, clean it and make it ready for building machine learning models • Identify the suitable task to be performed on data for useful model development • Apply suitable algorithm on the data to develop models Use suitable metrics to come up with the most suitable model for solving a particular task
3.	Module -3 Deep Learning and Natural	3.0 Deep Learning Concepts3.1 Artificial Neural Network3.2 Deep Neural Networks3.2.1 Convolutional Neural	38	52	After completion of this module the participants will be able to • Solve AI problems

रा.इ.सू.प्रौ.सं NIELIT Advanced Diploma in Artificial Intelligence (Certified AI Application Engineer)

	Language	Network			involving
	Processing	3.2.2 Recurrent Neural			unstructured data.
	- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Network			 Implement solutions
		3.2.3 OpenCV, Tensorflow,			•
		Keras			for image related
		3.2.4 Introduction to			problems using Deep
					Learning
		Generative Adversarial			• Implement solutions
		Networks(GAN)			to text related
		3.3 Natural Language			problems using NLP
		Processing Methods			
		3.3.1 Basics of text			
		processing			
		3.3.2 Lexical processing			
		3.3.3 Syntax and Semantics			
		3.3.4 Parts of Speech			
		Tagging 3.3.5 Applications like			
		Sentiment Analysis,			
		Text Classification,			
		Text Summarization,			
		Document Clustering,			
		Document Similarity,			
		Web Crawling etc.			
4.	Module-4	4.0 Introduction to	1.5	20	After attending this
	AI Platforms	AI/Cognitive platforms 4.1 Reinforcement Learning	15	20	module the participants will be able to
	& All Flationins	and its applications in AI			• use popular AI
	Reinforcement	and its applications in th			platforms to solve
	Learning				AI based problems
	C				•
					• use reinforcement
					learning to solve AI
					related problems
5.	Module-5	5.0 The participants will be			After completion of the
	Project	doing an industry relevant	10	95	project
		project using real data.			• Participants will be
					able to formulate
					the right problems
					that can be solved
					using the data
					available at hand.
					• Design the solution
					• Implement it using
					1

NIELIT Advanced Diploma in Artificial Intelligence (Certified AI Application Engineer)

					latest AI tools and methods.
Total Hours = 420			145	275	

Examination & Certification:

NIELIT's NSQF Examination pattern will be followed for Examination & Certification.

Sl	Examination Pattern	Modules	Duration in	Maximum
No		Covered	Minutes	Marks
1	Theory Paper – 1	1,4	90	100
2	Theory Paper – 2	2,3	90	100
3	Practical -1	1-4	180	90
4	Internal Assessment	1-4	-	50
5	Project/Presentation / Assignment	5	-	60
6	Major Project/Dissertation	5	-	100
	Total			500

Note:

- 1. Pass percentage would be 50% marks in each component, with aggregate pass percentage of 50% and above.
- 2. Grading will be as under:

	S	A	В	C	D
Marks Range (in %)	>=85%	>=75%- <85%	>=65%- <75%	>=55%- <65%	>=50%- <55%

- 3. Theory examination would be conducted online and the paper comprise of MCQ and each question will carry 1 mark.
- 4. Practical examination/Internal Assessment/ Project/Presentation/Assignment would be evaluated internally.
- 5. Major Project/Dissertation would be evaluated preferably by External / Subject Expert including NIELIT Officials.
- 6. Candidate may apply for re-examination within the validity of registration.
- 7. The examinations would be conducted in English Language only.

Recommended hardware/software tools:

- 1. High end Servers and client machines
- 2. GPU/TPU

3. Linux based Software infrastructure including python and packages like Scikit-learn, Keras, Tensor Flow, etc.

Faculty & Support / Lab Instructor:

- 1. Two Faculties with B.Tech (CS/IT/EC) / MCA or equivalent with programming knowledge and relevant experience in Artificial Intelligence
- 2. One Support / Lab Instructor with at least Diploma in (CS/IT/EC)/ BCA or equivalent with programming knowledge and relevant experience in Artificial Intelligence

References:

- 1. Machine Learning an algorithmic Perspective by Stephen Marshland
- 2. Programming in Python by Mark Summerfield
- 3. Learning Python By Mark Lutz, David Ascher
- 4. Introduction to Machine Learning with python by Andreas C Muller, Sarah Guido,
- 5. Artificial Intelligence- Reshaping Life and Business by Prabhath Kumar
- 6. R for everyone by Jared P Lander
- 7. https://scikit-learn.org/
- 8. https://www.tensorflow.org/
- 9. https://keras.io/

Course Name	Advanced	Diploma in	Vertical	Artificial Intelligence
	Artificial	Intelligence		-
	(Certified A	AI Application		-71
	Engineer)			
Course Code		7	Rev No	R4
Prepared By	Vimala Mathe	ew	Proposed NSQF	7
116			Level	
NIELIT	Calicut		Last Revised on	03.06.2019
Centre				